Hypersensitive Transport in Photonic Crystals with Accidental Spatial Degeneracies
نویسندگان
چکیده
A localized mode in a photonic layered structure can develop nodal points (nodal planes), where the oscillating electric field is negligible. Placing a thin metallic layer at such a nodal point results in the phenomenon of induced transmission. Here we demonstrate that if the nodal point is not a point of symmetry, then even a tiny alteration of the permittivity in the vicinity of the metallic layer drastically suppresses the localized mode along with the resonant transmission. This renders the layered structure highly reflective within a broad frequency range. Applications of this hypersensitive transport for optical and microwave limiting and switching are discussed.
منابع مشابه
Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals.
We formulate and exploit a computational inverse-design method based on topology optimization to demonstrate photonic crystal structures supporting complex spectral degeneracies. In particular, we discover photonic crystals exhibiting third-order Dirac points formed by the accidental degeneracy of monopolar, dipolar, and quadrupolar modes. We show that, under suitable conditions, these modes ca...
متن کاملSymmetry reduction in group 4mm photonic crystals
The size of absolute band gaps in two-dimensional photonic crystals is often limited by band degeneracies at the lattice symmetry points. By reducing the lattice symmetry, these degeneracies can be lifted to increase the size of existing photonic band gaps, or to create new gaps where none existed for the more symmetric structure. Specifically, symmetry reduction by the addition of different di...
متن کاملDesign and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملDesign and Simulation 4-Channel Demultiplexer Based on Photonic Crystals Ring Resonators
In this paper, a new design of demultiplexer based on two-dimensional photonic crystal ringresonator is proposed. The structure is made of a hexagonal lattice of silicon rods with therefractive index 3.46 in coefficient of air with refractive index 1. The transmission efficiencyand Quality factor for our proposed demultiplexer, respectively, are more than 65% and1600. The normalized transmissio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016